The Respiratory System

Al-Farabi Kazakh National University Higher School of Medicine

LEARNING OUTCOMES

As a result of the lesson you will be able to:

- □ *List state the functions of the respiratory system;*
- □ Name and Identify the organs forming the respiratory passageway from the nasal cavity to the alveoli of the lungs (on a diagram or model), and describe the function of each.
- Describe the structure and function of the lungs, the pleural coverings and the respiratory membrane.
- □ Name the muscles of respiration and describe their roles in inspiration and expiration;
- Describe the brainstem centers that control breathing and the inputs they receive from other parts of the nervous system.
- Define partial pressure and explain how it affects diffusion of gases across the respiratory membrane;
- Describe gas exchange in the lungs and systemic capillaries;
- \Box Describe how O_2 and CO_2 are transported in the blood;
- *Explain the effect of blood gases and pH on the respiratory rhythm*

Breathing

- breathing represents life!
 - first breath of a newborn baby
 - last gasp of a dying person
- all our body processes directly or indirectly require ATP
 - ATP synthesis requires oxygen and produces carbon dioxide
 - drives the need to breathe to take in oxygen, and eliminate carbon dioxide
- the respiratory system consists of a system of tubes that delivers air to the lung
 - oxygen diffuses into the **blood**, and carbon dioxide diffuses out
- **respiratory** and **cardiovascular systems** work together to deliver oxygen to the tissues and remove carbon dioxide
 - considered jointly as cardiopulmonary system
 - disorders of lungs directly effect the heart and vise versa
- respiratory system and the urinary system collaborate to regulate the body's acid base balance

Respiration

Respiration has three meanings:

- 1. ventilation of the lungs (breathing)
- 2. the exchange of gases between the air and blood, and between blood and the tissue fluid
- 3. the use of oxygen in cellular metabolism

Functions of Respiratory System

- O₂ and CO₂ exchange between blood and air
- **speech** and other vocalizations
- sense of **smell**
- affects **pH** of body fluids by eliminating CO₂
- affects blood pressure by synthesis of vasoconstrictor, angiotensin II
- breathing creates pressure gradients between thorax and abdomen that promote the flow of lymph and venous blood
- breath-holding helps expel abdominal contents during urination, defecation, and childbirth (Valsalva maneuver)

Principal Organs of Respiratory System

• nose, pharynx, larynx, trachea, bronchi, lungs

- incoming air stops in the **alveoli**
 - millions of thin-walled, microscopic air sacs
 - exchanges gases with the bloodstream through the alveolar wall, and then flows back out

• **conducting division** of the respiratory system

- those passages that serve only for airflow
- no gas exchange
- nostrils through major bronchioles
- respiratory division of the respiratory system
 - consists of alveoli and other gas exchange regions
- **upper respiratory tract** in head and neck
 - nose through larynx
- **lower respiratory tract** organs of the thorax
 - trachea through lungs

Organs of Respiratory System

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

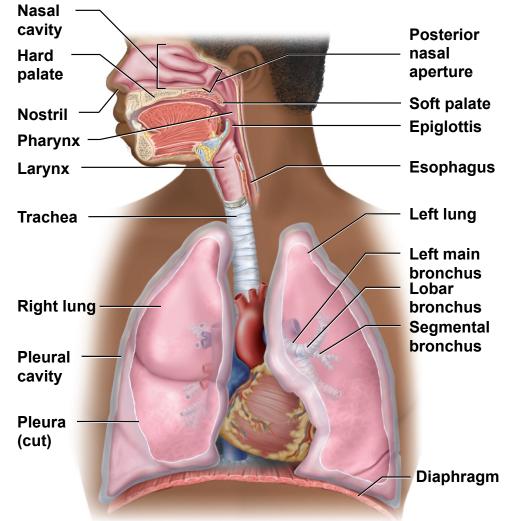
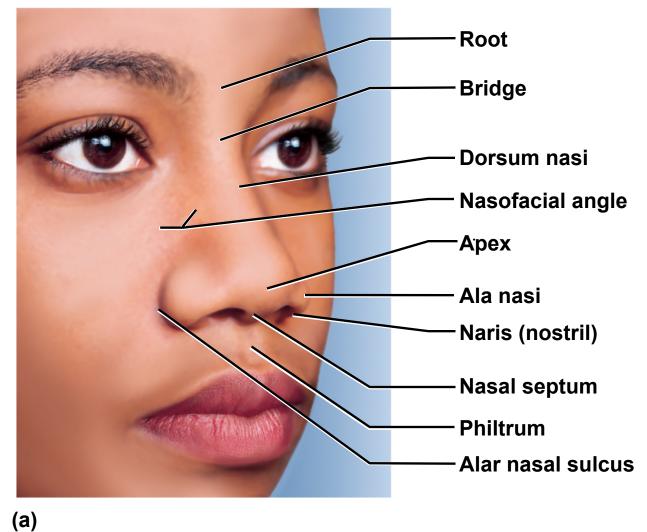


Figure 22.1
 nose, pharynx, larynx, trachea, bronchi, lungs

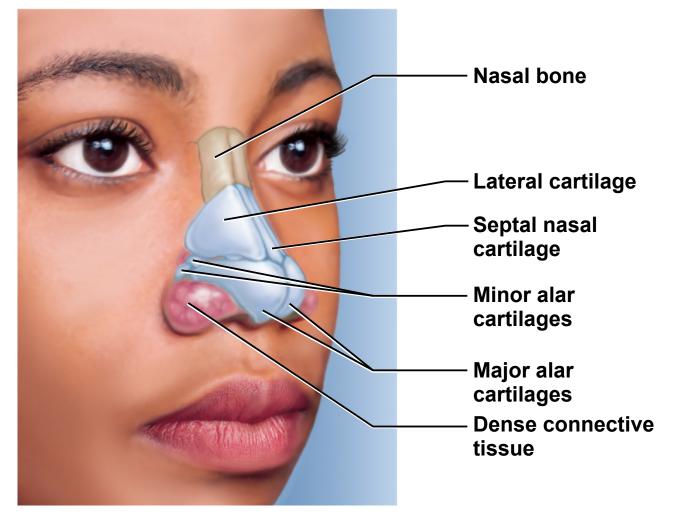

7

The Nose

- functions of the nose
 - warms, cleanses, and humidifies inhaled air
 - detects odors in the airstream
 - serves as a resonating chamber that amplifies the voice
- nose extends from nostrils (nares), to a pair of posterior openings called the posterior nasal apertures (choanae)
- facial part is shaped by bone and hyaline cartilage
 - superior half nasal bones and maxillae
 - inferior half lateral and alar cartilages
 - ala nasi flared portion at the lower end of nose shaped by alar cartilages and dense connective tissue

Anatomy of Nasal Region

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



© The McGraw-Hill Companies/Rebecca Gray, photographer/Don Kincaid, dissections

Figure 22.2a

Anatomy of Nasal Region

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(b)

© The McGraw-Hill Companies/Joe DeGrandis, photographer

Figure 22.2b

Nasal Cavity

- nasal fossae right and left halves of the nasal cavity
 - nasal septum divides nasal cavity
 - composed of bone and hyaline cartilage
 - vomer forms inferior part
 - perpendicular plate of ethmoid forms superior part
 - septal cartilage forms anterior part
 - roof and floor of nasal cavity
 - ethmoid and sphenoid bones form the roof
 - hard palate forms floor
 - separates the nasal cavity from the oral cavity and allows you to breathe while you chew food
 - paranasal sinuses and nasolacrimal duct drain into nasal cavity

Nasal Cavity

- **vestibule** beginning of nasal cavity small dilated chamber just inside nostrils
 - lined with stratified squamous epithelium
 - vibrissae stiff guard hairs that block insects and debris from entering nose
- posteriorly the nasal cavity expands into a larger chamber with not much open space.
- occupied by three folds of tissue nasal conchae
 - superior, middle, and inferior nasal conchae (turbinates)
 - project from lateral walls toward septum
 - **meatus** narrow air passage beneath each concha
 - narrowness and turbulence insure that most air contacts mucous membranes
 - · cleans, warms, and moistens the air
- olfactory epithelium detect odors
 - covers a small area of the roof of the nasal fossa and adjacent parts of the septum and superior concha
 - ciliated pseudostratified columnar epithelium with goblet cells
 - immobile cilia to bind odorant molecules

Nasal Cavity

- **respiratory epithelium** lines rest of nasal cavity except vestibule
 - ciliated pseudostratified columnar epithelium with goblet cells
 - cilia are motile
 - goblet cells secrete mucus and cilia propel the mucous posteriorly toward pharynx
 - swallowed into digestive tract
- erectile tissue extensive venous plexus in inferior concha
 - every 30 to 60 minutes, erectile tissue on one side swells with blood
 - restricts air flow through that fossa
 - most air directed through other nostril and fossa
 - allowing engorged side time to recover from drying
 - preponderant flow of air shifts between the right and left nostrils once or twice an hour

Upper Respiratory Tract

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

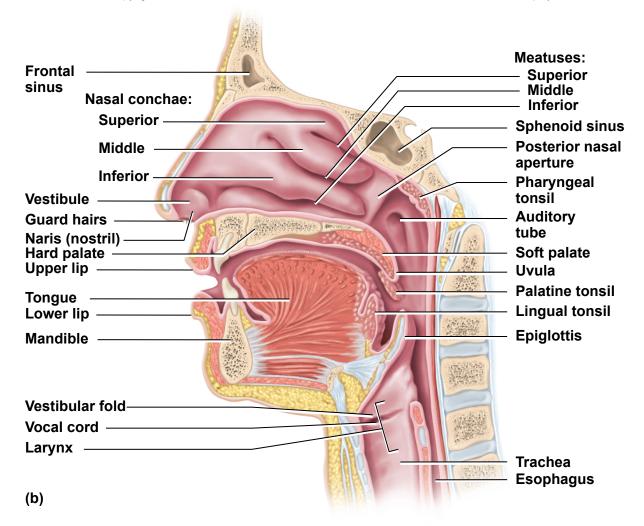
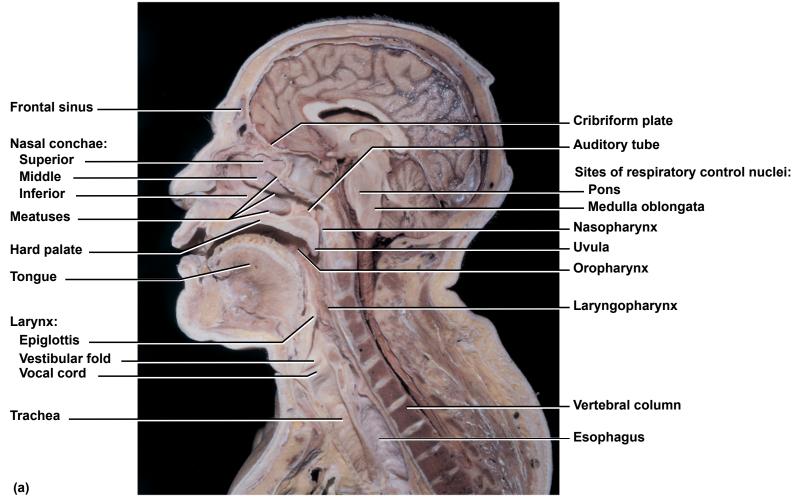
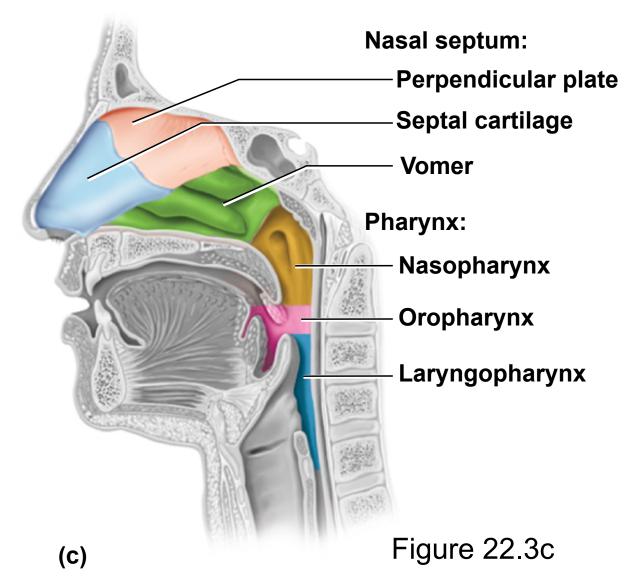



Figure 22.3b

Upper Respiratory Tract


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© The McGraw-Hill Companies/Joe DeGrandis, photographer

Regions of Pharynx

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pharynx

- pharynx (throat) a muscular funnel extending about 13 cm (5 in.) from the choanae to the larynx
- three regions of pharynx
 - nasopharynx
 - posterior to nasal apertures and above soft palate
 - receives auditory tubes and contains pharyngeal tonsil
 - 90° downward turn traps large particles (>10μm)
 - oropharynx
 - space between soft palate and epiglottis
 - contains palatine tonsils
 - laryngopharynx
 - epiglottis to cricoid cartilage
 - esophagus begins at that point
- nasopharynx passes only air and is lined by pseudostratified columnar epithelium
- oropharynx and laryngopharynx pass air, food, and drink and are lined by stratified squamous epithelium

Larynx

- larynx (voice box) cartilaginous chamber about 4 cm (1.5 in.)
- primary function is to keep food and drink out of the airway
 - has evolved to additional role phonation production of sound
- epiglottis flap of tissue that guards the superior opening of the larynx
 - at rest, stands almost vertically
 - during swallowing, extrinsic muscles of larynx pull larynx upward
 - tongue pushes epiglottis down to meet it
 - closes airway and directs food to the esophagus behind it
 - vestibular folds of the larynx play greater role in keeping food and drink out of the airway

Views of Larynx

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

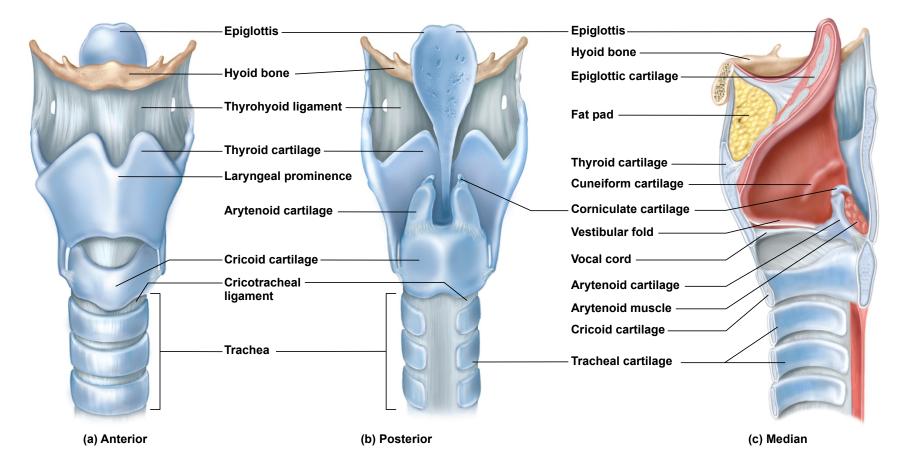
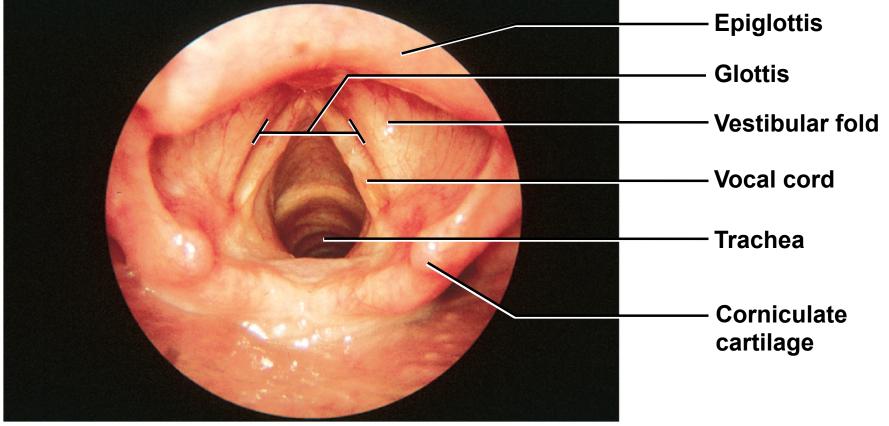


Figure 22.4 a-c

Larynx

- **nine cartilages** that make up framework of larynx
- first three are solitary and relatively large
 - epiglottic cartilage spoon-shaped supportive plate in epiglottis most superior one
 - thyroid cartilage largest, laryngeal prominence (Adam's apple) shield-shaped
 - testosterone stimulated growth, larger in males
 - cricoid cartilage connects larynx to trachea, ringlike
- three smaller, paired cartilages
 - arytenoid cartilages (2) posterior to thyroid cartilage
 - corniculate cartilages (2) attached to arytenoid cartilages like a pair of little horns
 - cuneiform cartilages (2) support soft tissue between arytenoids and epiglottis

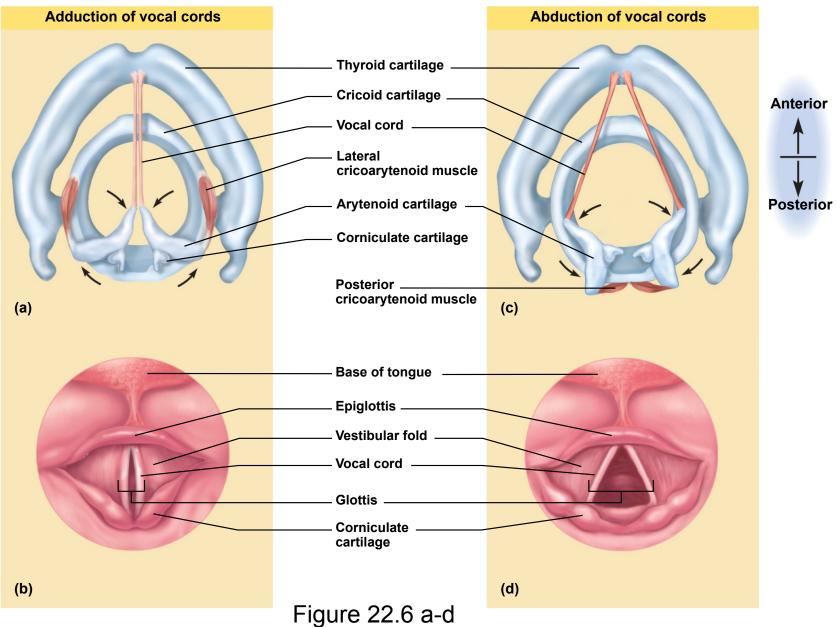

Walls of Larynx

- walls of larynx are quite muscular
 - deep intrinsic muscles operate the vocal cords
 - superior extrinsic muscles connect the larynx to hyoid bone
 - elevate the larynx during swallowing
 - infrahyoid group
- interior wall has two folds on each side that extend from thyroid cartilage in front to arytenoid cartilages in the back
 - superior vestibular folds
 - play no role in speech
 - close the larynx during swallowing
 - inferior vocal cords
 - produce sound when air passes between them
 - contain vocal ligaments
 - covered with stratifies squamous epithelium
 - best suited to endure vibration and contact between the cords
 - **glottis** the vocal cords and the opening between them

Endoscopic View of the Larynx

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Anterior



Posterior

Figure 22.5a

Action of Vocal Cords

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Action of Vocal Cords

- intrinsic muscles control the vocal cords
 - pull on the corniculate and arytenoid cartilages
 - causing the cartilages to pivot
 - abduct or adduct vocal cords, depending on direction of rotation
 - air forced between adducted vocal cords vibrates them
 - producing high pitched sound when cords are taut
 - produce lower-pitched sound when cords are more slack
 - adult male vocal cords are:
 - usually longer and thicker
 - vibrate more slowly
 - produce lower pitched sound
 - loudness determined by the force of air passing between the vocal cords
 - vocal cords produce crude sounds that are formed into words by actions of pharynx, oral cavity, tongue, and lips

Trachea

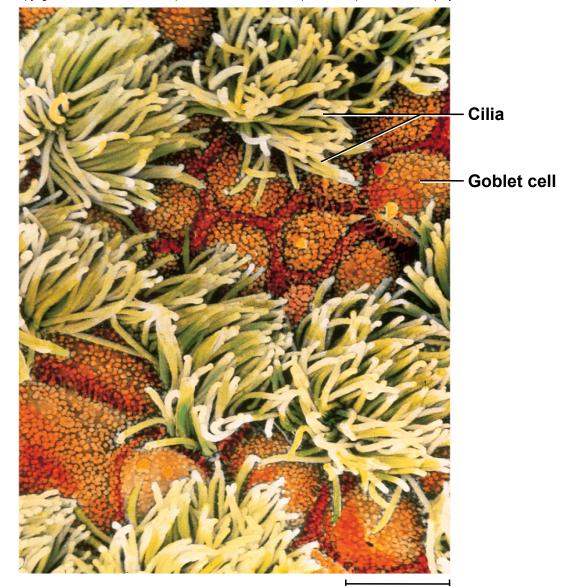
- trachea (windpipe) a rigid tube about 12 cm (4.5 in.) long and 2.5 cm (1 in.) in diameter
 - found anterior to esophagus
 - supported by 16 to 20 C-shaped rings of hyaline cartilage
 - reinforces the trachea and keeps it from collapsing when you inhale
 - opening in rings faces posteriorly towards esophagus
 - trachealis muscle spans opening in rings
 - gap in C allows room for the esophagus to expand as swallowed food passes by
 - contracts or relaxes to adjust air flow

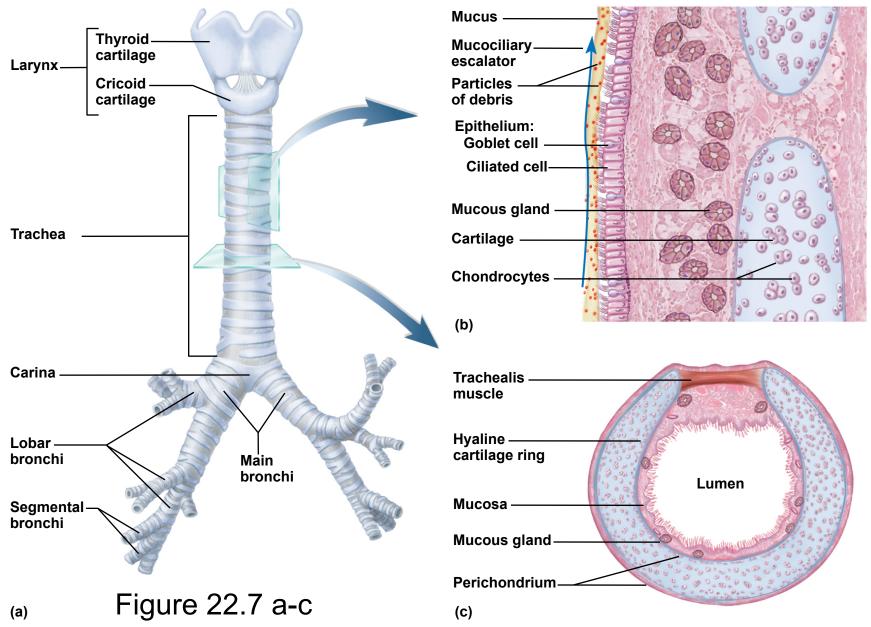
Trachea

- inner lining of trachea is a ciliated pseudostratified columnar epithelium
 - composed mainly of mucus-secreting cells, ciliated cells, and stem cells
 - mucociliary escalator mechanism for debris removal
 - mucus traps inhaled particles
 - upward beating cilia drives mucus toward pharynx where it is swallowed
- middle tracheal layer connective tissue beneath the tracheal epithelium
 - contains lymphatic nodules, mucous and serous glands, and the tracheal cartilages
- adventitia outermost layer of trachea
 - fibrous connective tissue that blends into adventitia of other organs of mediastinum
- right and left main bronchi
 - trachea forks at level of sternal angle
 - carina internal medial ridge in the lowermost tracheal cartilage
 - directs the airflow to the right and left

Tracheal Epithelium

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.




Figure 22.8

Tracheostomy

- tracheostomy to make a temporary opening in the trachea inferior to the larynx and insert a tube to allow airflow
 - prevents asphyxiation due to upper airway obstruction
 - inhaled air bypasses the nasal cavity and is hot humidified
 - if left for long will dry out the mucous membranes of the respiratory tract
 - become encrusted and interfere with clearance of mucus from tract
 - promoting infection

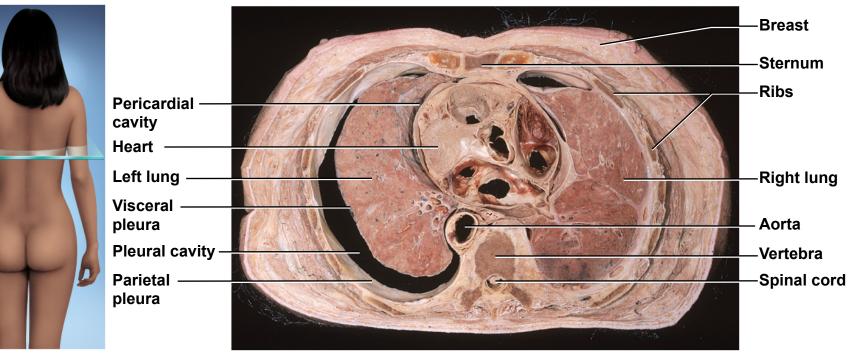
Lower Respiratory Tract

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29

Lungs - Surface Anatomy

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Figure 22.9

(b) Mediastinal surface, right lung

Thorax - Cross Section

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Anterior

Posterior

Ralph Hutchings/Visuals Unlimited

Figure 22.10

Lungs

- lung conical organ with a broad, concave base, resting on the diaphragm, and a blunt peak called the apex projecting slightly above the clavicle
 - costal surface pressed against the ribcage
 - mediastinal surface faces medially toward the heart
 - hilum slit through which the lung receives the main bronchus, blood vessels, lymphatics and nerves
 - these structures constitute the **root** of the lung
- lungs are crowded by adjacent organs, neither fill the entire ribcage, nor are they symmetrical.
 - right lung
 - shorter than left because the liver rises higher on the right
 - has three lobes superior, middle, and inferior separated by horizontal and oblique fissure
 - left lung
 - taller and narrower because the heart tilts toward the left and occupies more space on this side of mediastinum
 - has indentation cardiac impression
 - has two lobes superior and inferior separated by a single oblique fissure

Bronchial Tree

- bronchial tree a branching system of air tubes in each lung
 from main bronchus to 65,000 terminal bronchioles
- main (primary) bronchi supported by c-shaped hyaline cartilage rings
 - rt. main bronchus is a 2-3 cm branch arising from fork of trachea
 - right bronchus slightly wider and more vertical than left
 - aspirated (inhaled) foreign objects lodge right bronchus more often the left
 - It. main bronchus is about 5 cm long
 - slightly narrower and more horizontal than the right
- lobar (secondary) bronchi supported by crescent shaped cartilage plates
 - three rt. lobar (secondary) bronchi superior, middle, and inferior
 - one to each lobe of the right lung
 - two It. lobar bronchi superior and inferior
 - one to each lobe of the left lung
- segmental (tertiary) bronchi supported by crescent shaped cartilage plates
 - 10 on right, and 8 on left
 - bronchopulmonary segment –functionally independent unit of the lung tissue

Bronchial Tree

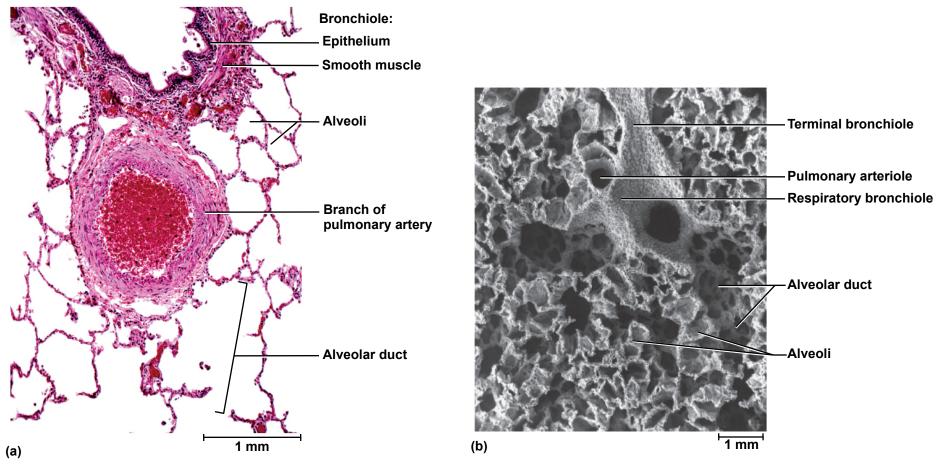
- all bronchi are lined with ciliated pseudostratified columnar epithelium
 - cells grow shorter and the epithelium thinner as we progress distally
 - lamina propria has an abundance of mucous glands and lymphocyte nodules (bronchus-associated lymphoid tissue, BALT)
 - positioned to intercept inhaled pathogens
 - all divisions of bronchial tree have a large amount of **elastic connective tissue**
 - contributes to the recoil that expels air from lungs
 - mucosa also has a well-developed layer of smooth muscle
 - muscularis mucosae which contracts or relaxes to constrict or dilate the airway, regulating air flow
 - pulmonary artery branches closely follow the bronchial tree on their way to the alveoli
 - bronchial artery services bronchial tree with systemic blood
 - · arises from the aorta

Bronchial Tree

bronchioles

- lack cartilage
- 1 mm or less in diameter
- pulmonary lobule portion of lung ventilated by one bronchiole
- have ciliated cuboidal epithelium
- well developed layer of smooth muscle
- divides into 50 80 terminal bronchioles
 - final branches of conducting division
 - measure 0.5 mm or less in diameter
 - have no mucous glands or goblet cells
 - have cilia that move mucus draining into them back by mucociliary escalator
 - each terminal bronchiole gives off two or more smaller respiratory bronchioles

- respiratory bronchioles

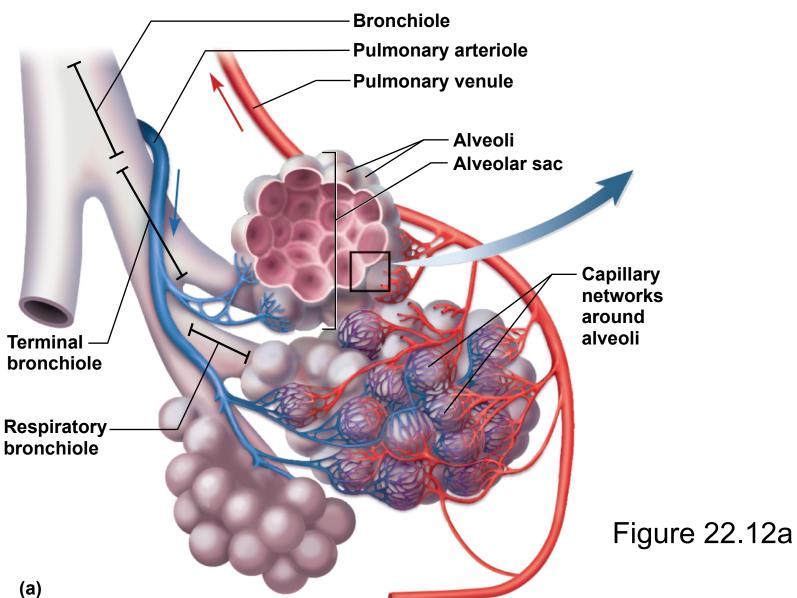

- have alveoli budding from their walls
- considered the beginning of the respiratory division since alveoli participate in gas exchange
- divide into 2-10 alveolar ducts
- end in alveolar sacs grape-like clusters of alveoli arrayed around a central space called the atrium

Path of Air Flow

nasal cavity → pharynx → larynx → trachea → main bronchus → lobar bronchus → segmental bronchus → bronchiole -terminal bronchiole respiratory division → respiratory bronchiole _alveolar duct _ atrium _alveolus

Lung Tissue

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



a: © Dr. Gladden Willis/Visuals Unlimited; b: Visuals Unlimited

Figure 22.11

Alveolar Blood Supply

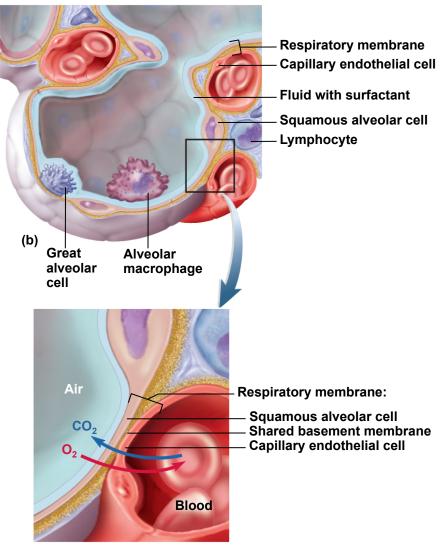
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Alveoli

- 150 million alveoli in each lung, providing about 70 m² of surface for gas exchange
- cells of the alveolus
 - squamous (type I) alveolar cells
 - thin, broad cells that allow for rapid gas diffusion between alveolus and bloodstream
 - cover 95% of alveolus surface area
 - great (type II) alveolar cells
 - round to cuboidal cells that cover the remaining 5% of alveolar surface
 - repair the alveolar epithelium when the squamous (type I) cells are damaged
 - secrete pulmonary surfactant
 - a mixture of phospholipids and proteins that coats the alveoli and prevents them from collapsing when we exhale

alveolar macrophages (dust cells)

- most numerous of all cells in the lung
- wander the lumen and the connective tissue between alveoli
- keep alveoli free from debris by phagocytizing dust particles
- 100 million dust cells perish each day as they ride up the mucociliary escalator to be swallowed and digested with their load of debris


Respiratory Membrane

- each alveolus surrounded by a basket of blood capillaries supplied by the pulmonary artery
- **respiratory membrane** the barrier between the alveolar air and blood
- respiratory membrane consists of:
 - squamous alveolar cells
 - endothelial cells of blood capillary
 - their shared basement membrane
- important to prevent fluid from accumulating in alveoli
 - gases diffuse too slowly through liquid to sufficiently aerate the blood
 - alveoli are kept dry by absorption of excess liquid by blood capillaries
 - lungs have a more extensive lymphatic drainage than any other organ the body
 - low capillary blood pressure also prevents the rupture of the delicate respiratory membrane

in

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(C)

Figure 22.12 b-c

41

The Pleurae and Pleural Fluid

- **visceral pleura** serous membrane that covers lungs
- parietal pleura adheres to mediastinum, inner surface of the rib cage, and superior surface of the diaphragm
- pleural cavity potential space between pleurae
 - normally no room between the membranes, but contains a film of slippery pleural fluid
- functions of pleurae and pleural fluid
 - reduce friction
 - create pressure gradient
 - lower pressure than atmospheric pressure and assists lung inflation
 - compartmentalization
 - · prevents spread of infection from one organ in the mediastinum to others

Pulmonary Ventilation

- breathing (pulmonary ventilation) consists of a repetitive cycle one cycle of inspiration (inhaling) and expiration (exhaling)
- **respiratory cycle** one complete inspiration and expiration
 - quiet respiration while at rest, effortless, and automatic
 - forced respiration deep rapid breathing, such as during exercise
- flow of air in and out of lung depends on a pressure difference between air pressure within lungs and outside body
- **breathing muscles** change lung volumes and create differences in pressure relative to the atmosphere

Respiratory Muscles

diaphragm

- prime mover of respiration
- contraction flattens diaphragm and enlarging thoracic cavity and pulling air into lungs
- relaxation allows diaphragm to bulge upward again, compressing the lungs and expelling air
- accounts for two-thirds of airflow

internal and external intercostal muscles

- synergist to diaphragm
- between ribs
- stiffen the thoracic cage during respiration
- prevents it from caving inward when diaphragm descends
- contribute to enlargement and contraction of thoracic cage
- adds about one-third of the air that ventilates the lungs

scalenes

- synergist to diaphragm
- quiet respiration holds ribs 1 and 2 stationary

Accessory Respiratory Muscles

• accessory muscles of respiration act mainly in forced respiration

forced inspiration

- erector spinae, sternocleidomastoid, pectoralis major, pectoralis minor, and serratus anterior muscles and scalenes
- greatly increase thoracic volume

normal quiet expiration

- an energy-saving passive process achieved by the elasticity of the lungs and thoracic cage
- as muscles relax, structures recoil to original shape and original (smaller) size of thoracic cavity, results in air flow out of the lungs

forced expiration

- rectus abdominis, internal intercostals, other lumbar, abdominal, and pelvic muscles
- greatly increased abdominal pressure pushes viscera up against diaphragm increasing thoracic pressure, forcing air out

Accessory Respiratory Muscles

 Valsalva maneuver – consists of taking a deep breath, holding it by closing the glottis, and then contracting the abdominal muscles to raise abdominal pressure and pushing organ contents out

- childbirth, urination, defecation, vomiting

Respiratory Muscles

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Inspiration Sternocleidomastoid (elevates sternum) Scalenes (fix or elevate ribs 1–2) External intercostals (elevate ribs 2-12, widen thoracic cavity) Pectoralis minor (cut) (elevates ribs 3–5) Forced expiration

Internal intercostals, intercartilaginous part (aid in elevating ribs)

Diaphragm (descends and increases depth of thoracic cavity)

Internal intercostals, interosseous part (depress ribs 1–11, narrow thoracic cavity)

Diaphragm (ascends and reduces depth of thoracic cavity)

Rectus abdominis (depresses lower ribs, pushes diaphragm upward by compressing abdominal organs)

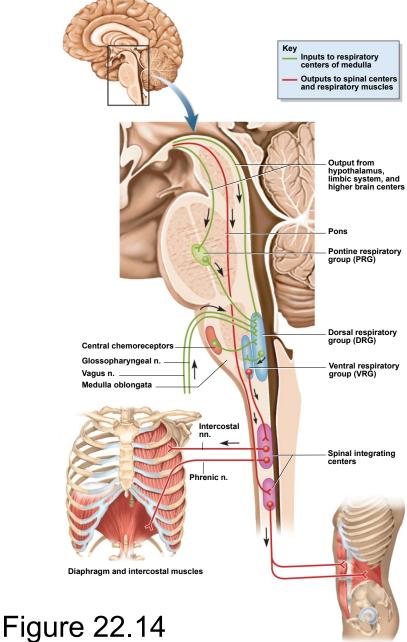
External abdominal oblique (same effects as rectus abdominis)

Figure 22.13

Neural Control of Breathing

- no autorhythmic pacemaker cells for respiration, as in the heart
- exact mechanism for setting the rhythm of respiration remains unknown
- breathing depends on repetitive stimuli of skeletal muscles from brain
- neurons in medulla oblongata and pons control unconscious breathing
- voluntary control provided by motor cortex
- inspiratory neurons: fire during inspiration
- expiratory neurons: fire during *forced* expiration
- innervation
 - fibers of **phrenic nerve** supply diaphragm
 - intercostal nerves supply intercostal muscles

Brainstem Respiratory Centers


• automatic, unconscious cycle of breathing is controlled by three pairs of respiratory centers in the reticular formation of the medulla oblongata and the pons

• respiratory nuclei in medulla

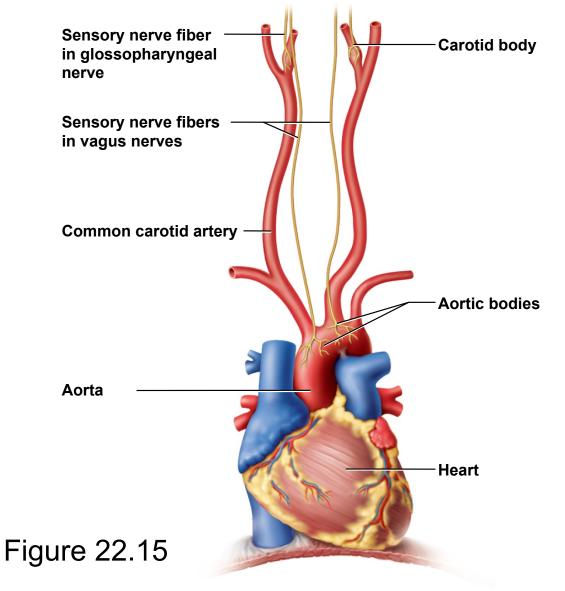
- ventral respiratory group (VRG)
 - primary generator of the respiratory rhythm
 - inspiratory neurons in quiet breathing (eupnea) fire for about two seconds
 - expiratory neurons in eupnea fire for about three seconds allowing inspiratory muscles to relax
 - produces a respiratory rhythm of 12 breath per minute

- dorsal respiratory group (DRG)

- modifies the rate and depth of breathing
- receives influences from external sources
- pons
 - pontine respiratory group (PRG)
 - modifies rhythm of the VRG by outputs to both the VRG and DRG
 - adapts breathing to special circumstances such as sleep, exercise, vocalization, and emotional responses

Respiratory Control Centers

Central and Peripheral Input to Respiratory Centers


- hyperventilation anxiety triggered state in which breathing is so rapid that it expels CO₂ from the body faster than it is produced. As blood CO₂ levels drop, the pH rises causing the cerebral arteries to constrict reducing cerebral perfusion which may cause dizziness or fainting
 - can be brought under control by having the person rebreathe the expired CO₂ from a paper bag
- central chemoreceptors brainstem neurons that respond to changes in pH of cerebrospinal fluid
 - pH of cerebrospinal fluid reflects the CO₂ level in the blood
 - by regulating respiration to maintain stable pH, respiratory center also ensures stable CO₂ level in the blood
- **peripheral chemoreceptors** located in the carotid and aortic bodies of the large arteries above the heart
 - respond to the O_2 and CO_2 content and the pH of blood

Central and Peripheral Input to Respiratory Centers

- **stretch receptors** found in the smooth muscles of bronchi and bronchioles, and in the visceral pleura
 - respond to inflation of the lungs
 - inflation (Hering-Breuer) reflex triggered by excessive inflation
 - protective reflex that inhibits inspiratory neurons stopping inspiration
- irritant receptors nerve endings amid the epithelial cells of the airway
 - respond to smoke, dust, pollen, chemical fumes, cold air, and excess mucus
 - trigger protective reflexes such as bronchoconstriction, shallower breathing, breath-holding (apnea), or coughing

Peripheral Chemoreceptors

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Voluntary Control of Breathing

- voluntary control over breathing originates in the motor cortex of frontal lobe of cerebrum
 - sends impulses down corticospinal tracts to respiratory neurons in spinal cord, bypassing brainstem
- limits to voluntary control

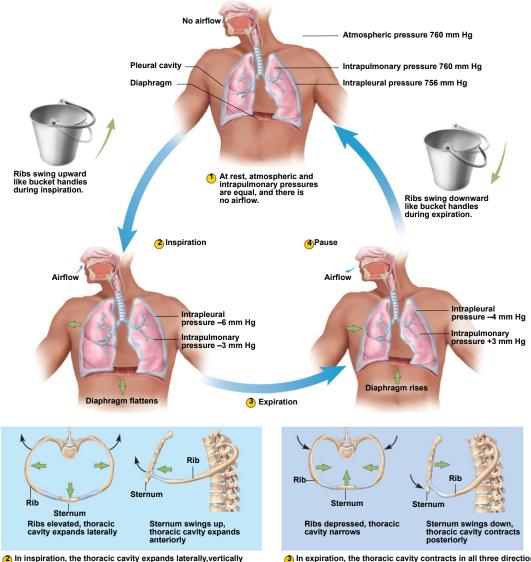
 breaking point when CO₂ levels rise to a point
 when automatic controls override one's will

Pressure and Airflow

- respiratory airflow is governed by the same principles of flow, pressure, and resistance as blood flow
 - the flow of a fluid is directly proportional to the pressure difference between two points
 - the flow of a fluid is inversely proportional to the resistance
- atmospheric pressure drives respiration
 - the weight of the air above us
 - 760 mm Hg at sea level 1 atmosphere (atm)
 - lower at higher elevations
- Boyle's Law at a constant temperature, the pressure of a given quantity of gas is inversely proportional to its volume
 - if the lungs contain a quantity of a gas and the lung volume increases, their internal pressure (intrapulmonary pressure) falls
 - if the pressure falls below atmospheric pressure the air moves into the lungs
 - if the lung volume decreases, intrapulmonary pressure rises
 - if the pressure rises above atmospheric pressure the air moves out of the lungs

Inspiration

- the two pleural layers, their cohesive attraction to each other, and their connections to the lungs and their lining of the rib cage bring about inspiration
 - when the ribs swing upward and outward during inspiration, the parietal pleura follows them
 - the visceral pleura clings to it by the cohesion of water and it follows the parietal pleura
 - it stretches the alveoli within the lungs
 - the entire lung expands along the thoracic cage
 - as it increases in volume, its internal pressure drops, and air flows in
- intrapleural pressure the slight vacuum that exists between the two pleural layers
 - about -4 mm Hg
 - drops to -6 mm Hg during inspiration as parietal pleura pulls away
 - some of this pressure change transfers to the interior of the lungs
 - intrapulmonary pressure the pressure in the alveoli drops -3 mm Hg
 - pressure gradient from 760 mm Hg atmosphere to 757 mm Hg in alveoli air to flow into the lungs


allows

Inspiration

- another force that expands the lungs is Charles's Law
- **Charles's Law** the given quantity of a gas is directly proportional to its absolute temperature
 - on a cool day, 16°C (60°F) air will increase its temperature by 21°C (39°F) during inspiration
 - inhaled air is warmed to 37°C (99° F) by the time it reaches the alveoli
 - inhaled volume of 500 mL will expand to 536 mL and this thermal expansion will contribute to the inflation of the lungs
- in **quiet breathing**, the dimensions of the thoracic cage increase only a few millimeters in each direction
 - enough to increase its total volume by 500 mL.
 - thus, 500 mL of air flows into the respiratory tract

Respiratory Cycle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(2) In inspiration, the thoracic cavity expands laterally,vertically and anteriorly; intrapulmonary pressure drops 3 mm Hg below atmospheric pressure, and air flows into the lungs. In expiration, the thoracic cavity contracts in all three directions; intrapulmonary pressure rises 3 mm Hg above atmospheric pressure, and air flows out of the lungs.

Figure 22.16

58

Expiration

relaxed breathing

- passive process achieved mainly by the elastic recoil of the thoracic cage
- recoil compresses the lungs
- volume of thoracic cavity decreases
- raises intrapulmonary pressure to about +3 mm Hg
- air flows down the pressure gradient and out of the lungs

forced breathing

- accessory muscles raise intrapulmonary pressure as high as +30 mmHg
- massive amounts of air moves out of the lungs

Pneumothorax

- pneumothorax presence of air in pleural cavity
 - thoracic wall is punctured
 - inspiration sucks air through the wound into the pleural cavity
 - potential space becomes an air filled cavity
 - loss of negative intrapleural pressure allows lungs to recoil and collapse
- atelectasis collapse of part or all of a lung
 - can also result from an airway obstruction

Resistance to Airflow

- **pressure** is one determinant of airflow **resistance** is the other
 - the greater the resistance the slower the flow
- three factors influencing airway resistance
 - diameter of the bronchioles
 - **bronchodilation** increase in the diameter of a bronchus or bronchiole
 - epinephrine and sympathetic stimulation stimulate bronchodilation
 - increase air flow
 - bronchoconstriction decrease in the diameter of a bronchus or bronchiole
 - histamine, parasympathetic nerves, cold air, and chemical irritants stimulate bronchoconstriction
 - suffocation from extreme bronchoconstriction brought about by anaphylactic shock and asthma
 - pulmonary compliance the ease with which the lungs can expand
 - the change in lung volume relative to a given pressure change
 - compliance reduced by degenerative lung diseases in which the lungs are stiffened by scar tissue
 - surface tension of the alveoli and distal bronchioles
 - surfactant reduces surface tension of water
 - infant respiratory distress syndrome (IRDS) premature babies

Alveolar Surface Tension

- thin film of water needed for gas exchange
 - creates surface tension that acts to collapse alveoli and distal bronchioles
- pulmonary surfactant produced by the great alveolar cells
 - decreases surface tension by disrupting the hydrogen bonding in water
- premature infants that lack surfactant suffer from infant respiratory distress syndrome (IRDS)
 - great difficulty in breathing
 - treated with artificial surfactant until lungs can produce own

Alveolar Ventilation

- only air that enters the alveoli is available for gas exchange
- not all inhaled air gets there
- about 150 mL fills the conducting division of the airway
- anatomic dead space
 - conducting division of airway where there is no gas exchange
 - can be altered somewhat by sympathetic and parasympathetic stimulation
- in pulmonary diseases, some alveoli may be unable to exchange gases because they lack blood flow or there respiratory membrane has been thickened by edema or fibrosis

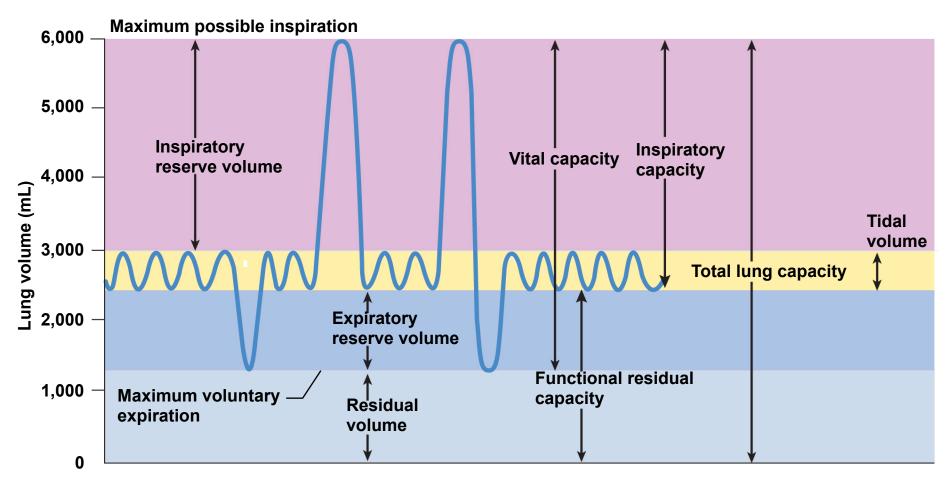
• physiologic (total) dead space

- sum of anatomic dead space and any pathological alveolar dead space
- a person inhales 500 mL of air, and 150 mL stays in anatomical dead space, then 350 mL reaches alveoli

• alveolar ventilation rate (AVR)

- air that ventilates alveoli (350 mL) X respiratory rate (12 bpm) = 4200 mL/min
- of all the measurements, this one is most directly relevant to the body's ability to get oxygen to the tissues and dispose of carbon dioxide
- **residual volume** 1300 mL that cannot be exhaled with max. effort

Measurements of Ventilation


 spirometer – a device that recaptures expired breath and records such variables such as rate and depth of breathing, speed of expiration, and rate of oxygen consumption

respiratory volumes

- tidal volume volume of air inhaled and exhaled in one cycle during quiet breathing (500 mL)
- inspiratory reserve volume air in excess of tidal volume that can be inhaled with maximum effort (3000 mL)
- expiratory reserve volume air in excess of tidal volume that can be exhaled with maximum effort (1200 mL)
- residual volume air remaining in lungs after maximum expiration (1300 mL)

Lung Volumes and Capacities

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Respiratory Capacities

- **vital capacity** total amount of air that can be inhaled and then exhaled with maximum effort
 - VC = ERV + TV + IRV (4700 mL)
 - important measure of pulmonary health
- **inspiratory capacity** maximum amount of air that can be inhaled after a normal tidal expiration
 - IC = TV + IRV (3500 mL)
- functional residual capacity amount of air remaining in lungs after a normal tidal expiration

 FRC = RV + ERV (2500 mL)
- total lung capacity maximum amount of air the lungs can contain
 - TLC = RV + VC (6000 mL)

Respiratory Capacities

• **spirometry** – the measurement of pulmonary function

aid in diagnosis and assessment of *restrictive* and *obstructive* lung disorders

- restrictive disorders those that reduce pulmonary compliance
 - limit the amount to which the lungs can be inflated
 - any disease that produces pulmonary fibrosis
 - black-lung, tuberculosis
- obstructive disorders those that interfere with airflow by narrowing or blocking the airway
 - make it harder to inhale or exhale a given amount of air
 - asthma, chronic bronchitis
 - emphysema combines elements of restrictive and obstructive disorders

Respiratory Capacities

- forced expiratory volume (FEV)
 - percentage of the vital capacity that can be exhaled in a given time interval
 - healthy adult reading is 75 85% in 1 sec

peak flow

- maximum speed of expiration
- blowing into a handheld meter

• minute respiratory volume (MRV)

- amount of air inhaled per minute
- TV x respiratory rate (at rest 500 x 12 = 6000 mL/min)

maximum voluntary ventilation (MVV)

- MRV during heavy exercise
- may be as high as 125 to 170 L/min

Variations in Respiratory Rhythm

- eupnea relaxed quiet breathing
 - characterized by tidal volume 500 mL and the respiratory rate of 12 15 bpm
- **apnea** temporary cessation of breathing
- **dyspnea** labored, gasping breathing; shortness of breath
- **hyperpnea** increased rate and depth of breathing in response to exercise, pain, or other conditions
- hyperventilation increased pulmonary ventilation in excess of metabolic demand
- **hypoventilation** reduced pulmonary ventilation
- Kussmaul respiration deep, rapid breathing often induced by acidosis
- **orthopnea** dyspnea that occurs when a person is lying down
- **respiratory arrest** permanent cessation of breathing
- tachypnea accelerated respiration

Gas Exchange and Transport

composition of air

- 78.6 % nitrogen, 20.9% oxygen, 0.04% carbon dioxide, 0 4% water vapor depending on temperature and humidity, and minor gases argon, neon, helium, methane and ozone
- **Dalton's Law** the total atmospheric pressure is the sum of the contributions of the individual gases
 - partial pressure the separate contribution of each gas in a mixture
 - at sea level 1 atm. of pressure = 760 mmHg
 - nitrogen constitutes 78.6% of the atmosphere, thus
 - $PN_2 = 78.6\% \times 760 \text{ mm Hg} = 597 \text{ mm Hg}$
 - Po₂ = 20.9% x 760 mm Hg = 159 mm Hg
 - $PH_2O = 0.5\% \times 760 \text{ mm Hg} = 3.7 \text{ mm Hg}$
 - Pco₂ = 0.04% x 760 mm Hg = 0.3 mm Hg

•
$$PN_2 + PO_2 + PH_2O + PCO_2 = 760 \text{ mmHg}$$

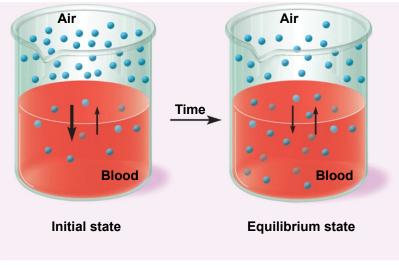
Composition of Inspired and Alveolar Air

- composition of inspired air and alveolar is different because of three influences:
 - 1. air is humidifies by contact with mucous membranes
 - alveolar P_{H_2O} is more than 10 times higher than inhaled air
 - 2. freshly inspired air mixes with residual air left from the previous respiratory cycle
 - oxygen is diluted and it is enriched with CO₂
 - 3. alveolar air exchanges O_2 and CO_2 with the blood
 - Po_2 of alveolar air is about 65% that of inspired air
 - Pco₂ is more than 130 times higher

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.				
TABLE 22.4		Composition of Inspired (Atmospheric) and Alveolar Air		
Gas	Inspired Air*		Alveolar Air	
N ₂	78.6%	597 mm Hg	74.9%	569 mm Hg
O ₂	20.9%	159 mm Hg	13.7%	104 mm Hg
H ₂ O	0.5%	3.7 mm Hg	6.2%	47 mm Hg
CO ₂	0.04%	0.3 mm Hg	5.3%	40 mm Hg
Total	100%	760 mm Hg	100%	760 mm Hg

*Typical values for a cool clear day; values vary with temperature and humidity. Other gases present in small amounts are disregarded.

Alveolar Gas Exchange


- alveolar gas exchange the back-and-forth traffic of O₂ and CO₂ across the respiratory membrane
 - air in the alveolus is in contact with a film of water covering the alveolar epithelium
 - for oxygen to get into the blood it must dissolve in this water
 - pass through the respiratory membrane separating the air from the bloodstream
 - for carbon dioxide to leave the blood it must pass the other way
 - diffuse out of the water film into the alveolar air
- gases diffuse down their own concentration gradient until the partial pressure of each gas in the air is equal to its partial pressure in water

Alveolar Gas Exchange

- Henry's law at the air-water interface, for a given temperature, the amount of gas that dissolves in the water is determined by its solubility in water and its partial pressure in air
 - the greater the PO_2 in the alveolar air, the more O_2 the blood picks up
 - since blood arriving at an alveolus has a higher PCO_2 than air, it releases CO_2 into the air
 - at the alveolus, the blood is said to **unload** CO_2 and **load** O_2
 - unload CO₂ and load O₂ involves erythrocytes
 - efficiency depends on how long RBC stays in alveolar capillaries
 - 0.25 sec necessary to reach equilibrium
 - at rest, RBC spends 0.75 sec in alveolar capillaries
 - strenuous exercise, 0.3, which is still adequate
 - each gas in a mixture behaves independently
 - one gas does not influence the diffusion of another

Alveolar Gas Exchange

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Oxygen

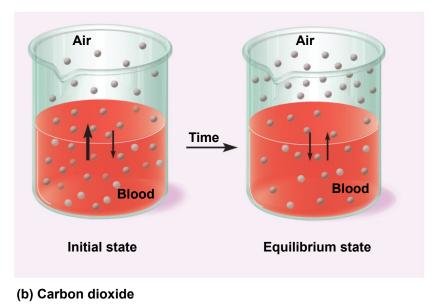


Figure 22.18

Factors Affecting Gas Exchange

- pressure gradient of the gases
 - Po₂ = 104 mm Hg in alveolar air versus 40 mm Hg in blood
 - PCO₂ = 46 mm Hg in blood arriving versus 40 mm Hg in alveolar air
 - hyperbaric oxygen therapy treatment with oxygen at greater than one atm of pressure
 - gradient difference is more, and more oxygen diffuses into the blood
 - treat gangrene, carbon monoxide poisoning
 - at high altitudes the partial pressures of all gases are lower
 - gradient difference is less, and less oxygen diffuses into the blood

solubility of the gases

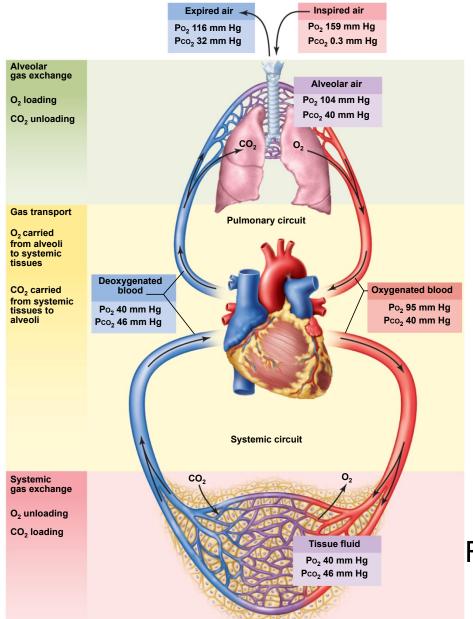
- CO₂ 20 times as soluble as O₂
 - equal amounts of O₂ and CO₂ are exchanged across the respiratory membrane because CO₂ is much more soluble and diffuses more rapidly
- O₂ is twice as soluble as N₂

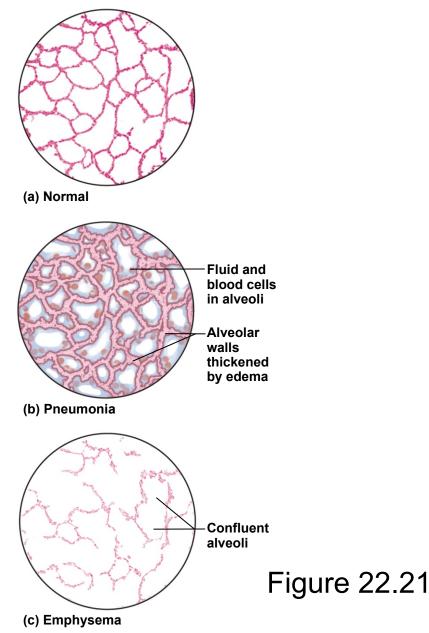
Factors Affecting Gas Exchange

• membrane thickness - only 0.5 μm thick

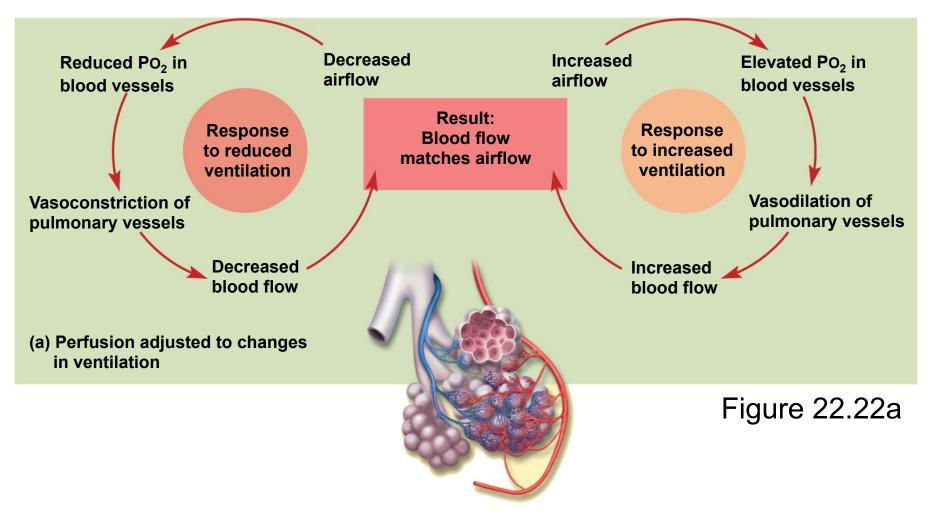
- presents little obstacle to diffusion
- pulmonary edema in left side ventricular failure causes edema and thickening of the respiratory membrane
- pneumonia causes thickening of respiratory membrane
- farther to travel between blood and air
- cannot equilibrate fast enough to keep up with blood flow
- membrane surface area 100 ml blood in alveolar capillaries, spread thinly over 70 m²
 - emphysema, lung cancer, and tuberculosis decrease surface area for gas exchange
- ventilation-perfusion coupling –the ability to match ventilation and perfusion to each other
 - gas exchange requires both good ventilation of alveolus and good perfusion of the capillaries
 - ventilation-perfusion ratio of 0.8 a flow of 4.2 L of air and 5.5 L of blood per minute at rest

Concentration Gradients of Gases

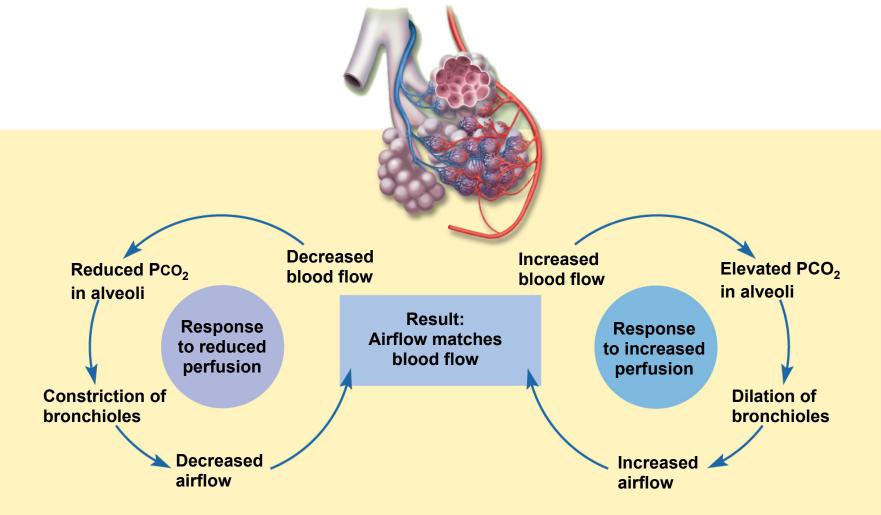




Figure 22.19

Ambient Pressure & Concentration Gradients


Lung Disease Affects Gas Exchange

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Perfusion Adjustments

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Ventilation Adjustments

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(b) Ventilation adjusted to changes in perfusion

Gas Transport

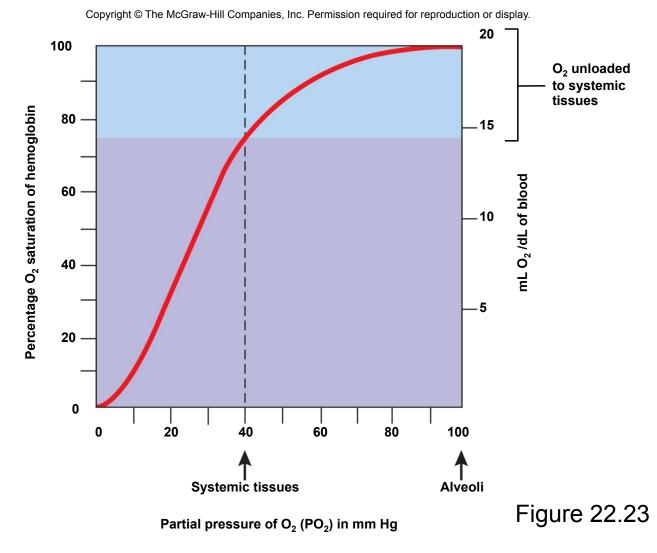
• **gas transport -** the process of carrying gases from the alveoli to the systemic tissues and vise versa

oxygen transport

- 98.5% bound to hemoglobin
- 1.5% dissolved in plasma

carbon dioxide transport

- 70% as bicarbonate ion
- 23% bound to hemoglobin
- 7% dissolved in plasma


Oxygen Transport

- arterial blood carries about 20 mL of O₂ per deciliter
 - 95% bound to hemoglobin in RBC
 - 1.5% dissolved in plasma
- hemoglobin molecule specialized in oxygen transport
 - four protein (globin) portions
 - each with a heme group which binds one O₂ to the ferrous ion (Fe²⁺)
 - one hemoglobin molecule can carry up to 4 O₂
 - oxyhemoglobin $(HbO_2) O_2$ bound to hemoglobin
 - deoxyhemoglobin (HHb) hemoglobin with no O₂
 - 100 % saturation Hb with 4 oxygen molecules
 - 50% saturation Hb with 2 oxygen molecules

Carbon Monoxide Poisoning

- carbon monoxide (CO) competes for the O₂
 binding sites on the hemoglobin molecule
- colorless, odorless gas in cigarette smoke, engine exhaust, fumes from furnaces and space heaters
- carboxyhemoglobin CO binds to ferrous ion of hemoglobin
 - binds 210 times as tightly as oxygen
 - ties up hemoglobin for a long time
 - non-smokers less than 1.5% of hemoglobin occupied by CO
 - smokers- 10% in heavy smokers
 - atmospheric concentrations of 0.2% CO is quickly lethal

Oxyhemoglobin Dissociation Curve

relationship between hemoglobin saturation and Po₂

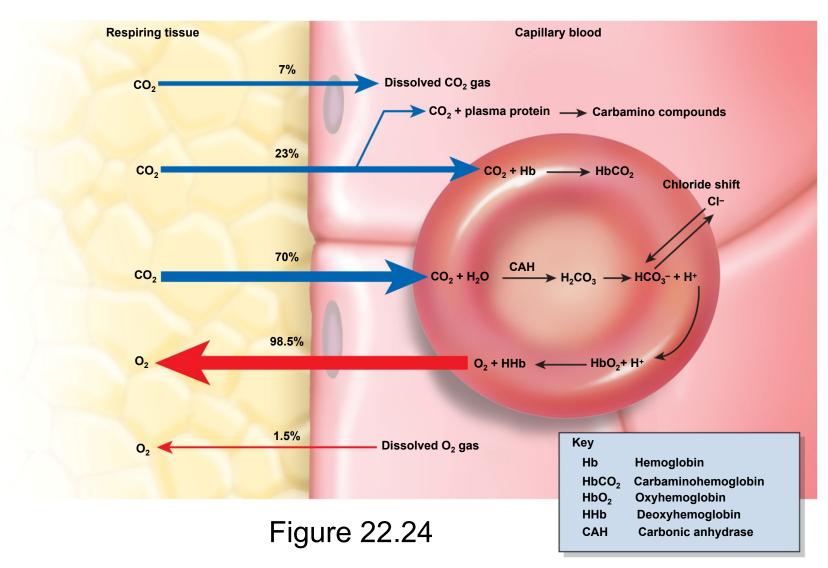
Carbon Dioxide Transport

- carbon dioxide transported in three forms
 - carbonic acid, carbamino compounds, and dissolved in plasma
- 90% of CO₂ is hydrated to form carbonic acid
 - $\text{CO}^2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{HCO3}^- + \text{H}^+$
 - then dissociates into bicarbonate and hydrogen ions
- 5% binds to the amino groups of plasma proteins and hemoglobin to form carbamino compounds – chiefly carbaminohemoglobin (HbCO₂)
 - carbon dioxide does not compete with oxygen
 - they bind to different moieties on the hemoglobin molecule
 - hemoglobin can transport O₂ and CO₂ simultaneously
- 5% is carried in the blood as dissolved gas
- relative amounts of CO₂ exchange between the blood and alveolar air differs:
 - 70% of exchanged CO₂ comes from carbonic acid
 - 23% from carbamino compounds
 - 7% dissolved in the plasma
 - blood gives up the dissolved CO₂ gas and CO₂ from the carbamino compounds more easily than CO₂ in bicarbonate

Systemic Gas Exchange

systemic gas exchange - the unloading of O₂ and loading of O₂ at the systemic capillaries

CO₂ loading


- \overline{CO}_2 diffuses into the blood
- carbonic anhydrase in RBC catalyzes
 - $\operatorname{CO}_2 + \operatorname{H}_2 \operatorname{O} \xrightarrow{} \operatorname{H}_2 \operatorname{CO}_3 \xrightarrow{} \operatorname{HCO}_3^- + \operatorname{H}^+$
- chloride shift
 - keeps reaction proceeding, exchanges HCO₃⁻ for CI-
 - H⁺ binds to hemoglobin

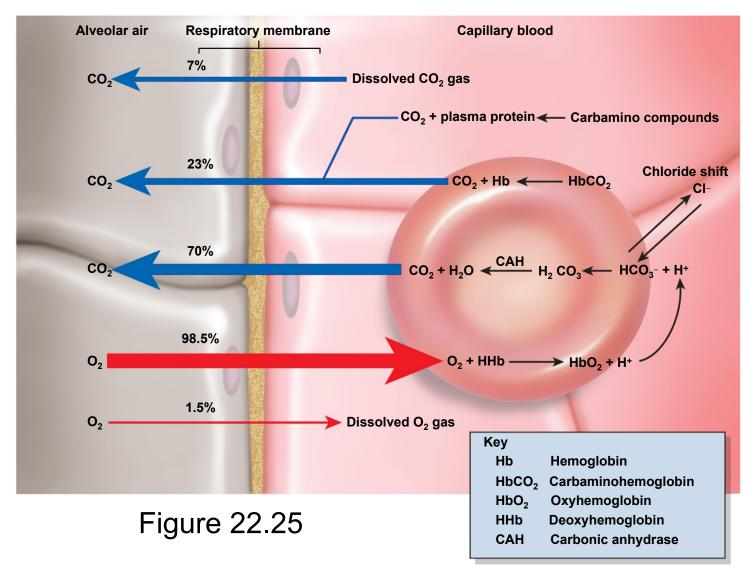
O₂ unloading

- H⁺ binding to HbO₂ reduces its affinity for O₂
 - tends to make hemoglobin release oxygen
 - HbO₂ arrives at systemic capillaries 97% saturated, leaves 75% saturated
 - venous reserve oxygen remaining in the blood after it passes through the capillary beds
- utilization coefficient given up 22% of its oxygen load

Systemic Gas Exchange

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Alveolar Gas Exchange Revisited

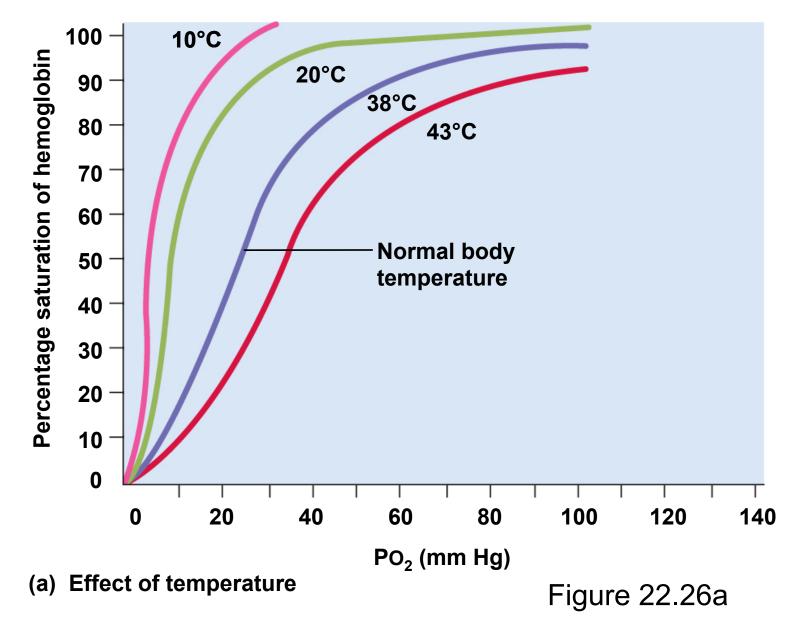

 reactions that occur in the lungs are reverse of systemic gas exchange

CO₂ unloading

- as Hb loads O₂ its affinity for H⁺ decreases, H⁺ dissociates from Hb and bind with HCO_3^-
 - $CO_2 + H_2O \leftarrow H_2CO_3 \leftarrow HCO_3^- + H^+$
- reverse chloride shift
 - HCO₃⁻ diffuses back into RBC in exchange for Cl-, free CO₂ generated diffuses into alveolus to be exhaled

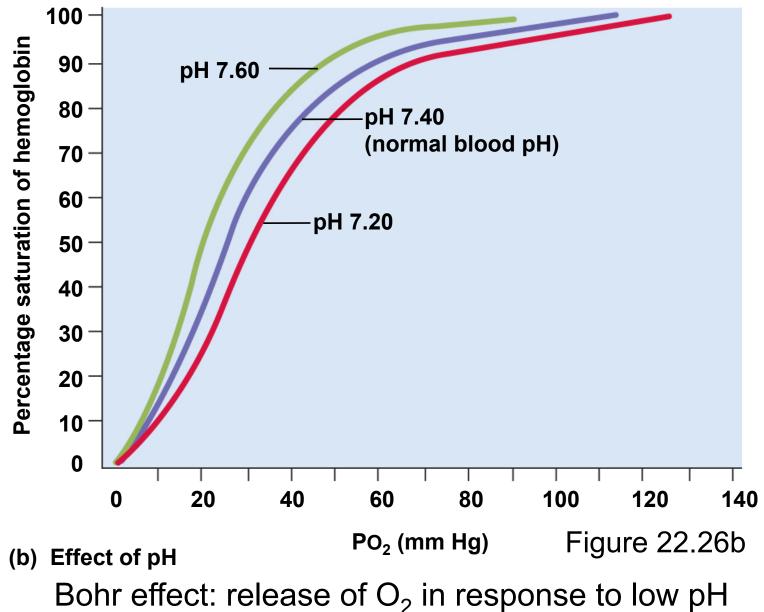
Alveolar Gas Exchange

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Adjustment to the Metabolic Needs of Individual Tissues

- hemoglobin unloads O₂ to match metabolic needs of different states of activity of the tissues
- four factors that adjust the rate of oxygen unloading
 - _ ambient Po₂
 - active tissue has $\downarrow Po_2$; O_2 is released from Hb
 - temperature
 - active tissue has ↑ temp; promotes O₂ unloading
 - Bohr effect
 - active tissue has ↑ CO₂, which lowers pH of blood ; promoting O₂ unloading
 - bisphosphoglycerate (BPG)
 - RBCs produce BPG which binds to Hb; O₂ is unloaded
 - Haldane effect rate of CO₂ loading is also adjusted to varying needs of the tissues, low level of oxyhemoglobin enables the blood to transport more CO₂
 - ↑ body temp (fever), thyroxine, growth hormone, testosterone, and epinephrine all raise BPG and cause O₂ unloading
 - ↑ metabolic rate requires ↑ oxygen


Oxygen Dissociation and Temperature

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Oxygen Dissociation and pH

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Blood Gases and the Respiratory Rhythm

- rate and depth of breathing adjust to maintain levels of:
 - pH 7.35 7.45
 - Pco_2 40 mm Hg
 - _ Po₂ 95 mm Hg
- brainstem respiratory centers receive input from central and peripheral chemoreceptors that monitor the composition of blood and CSF
- most potent stimulus for breathing is pH, followed by CO₂, and least significant is O₂

Hydrogen lons

- pulmonary ventilation is adjusted to maintain the pH of the brain
 - central chemoreceptors in the medulla oblongata produce about 75% of the change in respiration induced by pH shift
 - yet H⁺ does not cross the blood-brain barrier very easily
 - CO₂ does and in CSF reacts with water and produces carbonic acid
 - dissociates into bicarbonate and hydrogen ions
 - most H⁺ remains free and greatly stimulates the central chemoreceptors
 - hydrogen ions are also a potent stimulus to the peripheral chemoreceptors which produce about 25% of the respiratory response to pH change

Hydrogen lons

- acidosis blood pH lower than 7.35
- alkalosis blood pH higher than 7.45
- hypocapnia Pco₂ less than 37 mm Hg (normal 37 – 43 mm Hg)
 - most common cause of alkalosis
- hypercapnia Pco₂ greater than 43 mm Hg
 - most common cause of acidosis

Effects of Hydrogen lons

- respiratory acidosis and respiratory alkalosis pH imbalances resulting from a mismatch between the rate of pulmonary ventilation and the rate of CO₂ production
- hyperventilation is a corrective homeostatic response to acidosis
 - "blowing off" CO_2 faster than the body produces it
 - pushes reaction to the left CO₂ (expired) + H₂O ← H₂CO₃ ← HCO₃⁻ + ↓ H⁺
 - reduces H⁺ (reduces acid) raises blood pH towards normal

Effects of Hydrogen lons

- hypoventilation is a corrective homeostatic response to alkalosis
 - allows CO₂ to accumulate in the body fluids faster than we exhale it
 - shifts reaction to the right
 - $\operatorname{CO}_2 + \operatorname{H}_2 \operatorname{O} \rightarrow \operatorname{H}_2 \operatorname{CO}_3 \rightarrow \operatorname{HCO}_3^- + \operatorname{H}^+$
 - raising the H⁺ concentration, lowering pH to normal
- ketoacidosis acidosis brought about by rapid fat oxidation releasing acidic ketone bodies (diabetes mellitus)
 - induces Kussmaul respiration hyperventilation cannot remove ketone bodies, but blowing off CO₂, it reduces the CO₂ concentration and compensates for the ketone bodies to some degree

Carbon Dioxide

- indirect effects on respiration
 through pH as seen previously
- direct effects
 - ↑ CO₂ at beginning of exercise may directly
 stimulate peripheral chemoreceptors and trigger
 ↑ ventilation more quickly than central
 chemoreceptors

Effects of Oxygen

- Po₂ usually has little effect on respiration
- chronic hypoxemia, Po₂ less than 60 mm Hg, can significantly stimulate ventilation
 - hypoxic drive respiration driven more by low Po₂
 than by CO₂ or pH
 - emphysema, pneumonia
 - high elevations after several days

Respiration and Exercise

- causes of increased respiration during exercise
 - 1. when the brain sends motor commands to the muscles
 - it also sends this information to the respiratory centers
 - they increase pulmonary ventilation in anticipation of the needs of the exercising muscles
 - 2. exercise stimulates proprioceptors of the muscles and joints
 - they transmit excitatory signals to the brainstem respiratory centers
 - increase breathing because they are informed that the muscles have been told to move or are actually moving
 - increase in pulmonary ventilation keeps blood gas values at their normal levels in spite of the elevated O₂ consumption and CO₂ generation by the muscles

Respiratory Disorders Oxygen Imbalances

- hypoxia a deficiency of oxygen in a tissue or the inability to use oxygen
 - a consequence of respiratory diseases
- hypoxemic hypoxia state of low arterial PO₂
 - usually due inadequate pulmonary gas exchange
 - oxygen deficiency at high elevations, impaired ventilation drowning, aspiration of a foreign body, respiratory arrest, degenerative lung diseases
- **ischemic hypoxia** inadequate circulation of blood
 - congestive heart failure
- anemic hypoxia due to anemia resulting from the inability of the blood to carry adequate oxygen
- histotoxic hypoxia metabolic poisons such as cyanide prevent the tissues from using oxygen delivered to them
- cyanosis blueness of the skin
 - sign of hypoxia

Oxygen Excess

- oxygen toxicity pure O₂ breathed at 2.5 atm or greater
 - safe to breathe 100% oxygen at 1 atm for a few hours
 - generates free radicals and H_2O_2
 - destroys enzymes
 - damages nervous tissue
 - leads to seizures, coma, death

hyperbaric oxygen

formerly used to treat premature infants, caused retinal damage, was discontinued